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Prologue: state of the art

In reconsidering the so-called naive principles for sets as well
as for truth, typically one can follow two routes:

naive abstraction is suitably restricted (e.g. with positivity
conditions), but it is projected into classical or intuitionistic
logic;

naive abstraction is preserved in its natural and simple
form, but the underlying logic is refined in some sense, e.g.
to be contraction-free, many-valued . . . .
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(*) The first alternative gives rise to possibly useful
theories (theories of types and names à la Jäger,
explicit mathematics, theories of Frege
structures. . . );

(**) As to the second, it has turned out that it possibly
has appealing features form a computational point
of view (applications to implicit computational . . . )
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Comprehension and extensionality
Abstraction
Towards Recursion Theorem

Comprehension and extensionality

Non-uniform naive comprehension CA : for A arbitrary,
y /∈ FV (A)

(∀x)(∃y)(∀u)(u ∈ y ↔ A(u, x))

CA states that there exists a binary relation E on the universe
U which is universal for U-subsets, and this is impossible due
to Cantor’s theorem, as one could define a surjection of U onto
its power set.
Possible way out: syntactical restrictions reflecting topological
ideas . . .
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Extensionality

If = is primitive, Ext has the usual form, i.e. equiextensional
sets are equal

x =e y → x = y

where x =e y is (∀z)(z ∈ x ↔ z ∈ y). Else, if = is not primitive,
Ext means

x =e y → (∀z)(x ∈ z ↔ y ∈ z)

Andrea Cantini Naive abstraction and truth



Introduction
Standard systems

Non-standard systems
Appendix

Comprehension and extensionality
Abstraction
Towards Recursion Theorem

Extensionality

If = is primitive, Ext has the usual form, i.e. equiextensional
sets are equal

x =e y → x = y

where x =e y is (∀z)(z ∈ x ↔ z ∈ y). Else, if = is not primitive,
Ext means

x =e y → (∀z)(x ∈ z ↔ y ∈ z)

Andrea Cantini Naive abstraction and truth



Introduction
Standard systems

Non-standard systems
Appendix

Comprehension and extensionality
Abstraction
Towards Recursion Theorem

Generalized positive formulas GPF : the smallest class
containing atoms t ∈ s, t = s, closed under ∧, ∨, ∀, ∃ and also
bounded qtfs ∀x(x ∈ y → . . .) and universal qtfs restricted to
definable classes ∀x(C(x) → . . .)).

Theorem (Malitz 1976, Weydert 1988, Forti-Hinnion 1989)

CA for GPF-formulas ( hence Pos(=)-CA+Ext) is consistent.

Proof: the so-called hyperuniverses (Forti-Honsell 1994),
topological models. Non-uniformity of CA essential ! . . .
Idea: classes are sets if they are closed sets (under a suitable
topology)
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Abstraction

Uniform comprehension, i.e. abstraction F-AP, the uniform
CA, or abstraction principle:

(∀~v)(∀x)(x ∈ {u|A(u, ~v)} ↔ A(x , ~v)).

F is a given class of formulas.
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Let Pos(∈, 6=,=) be the class of positive fmlas generated from
positive ∈-atoms and positive and negative =-atoms.

Theorem (. . . Gilmore. . . )

Pos(∈, 6=,=)-AP is consistent

Model: the universe is given by terms with literal identity, while
the interpretation of ∈ is inductively generated (exploit positivity
and Tarski-Knaster). Much more is true (possibly enlarge the
language with dual membership. . . ).
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Comprehension vs. abstraction

Theorem (Gilmore 1967. . . )

Pos(∈,=))-AP is inconsistent with Ext

Theorem (CM 99)

QF+(∈,=)-AP is inconsistent with

the power set axiom;

the existence of extensional singletons;

extensionality
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The refutation results can be greatly refined to the extent that a
sort of generalized (effective) inseparability theorem holds
which implies several negative facts.
Applications:
upward closure of extensional properties.
Rice theorem generalized. . . The results follow from the
following theorem.
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Recursion Theory regained

Ordered pairing x , y 7→ 〈x , y〉 can be defined as usual...

Theorem (Pos(=,∈)-AP)

If fa := {x | 〈x , a〉 ∈ f}, then there is a term If with
FV (If ) = FV (f ) such that

⇒ If =e fIf

If t(x) is an arbitrary term, there exists I such that

I =e t [x := I]

Andrea Cantini Naive abstraction and truth
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For the proof, choose

Df = {z | ∃x∃g(z = 〈x , g〉 ⊗ x ∈ f (gg))} (1)

If = Df Df (2)
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On the other hand, if = is omitted:

Theorem (Hinnion, Libert 2003)

Pos(∈)-AP is consistent with Ext.

Construction : inductive generation of ∈ on the term model;
then show that equiextensionality is a congruence in the fixed
point model also with respect to abstraction terms!
Remark. Libert 2007: domain-theoretic construction. Untyped
lambda calculus extended with Fregean notions once beta
conversion is restricted to positive expressions (i.e. ¬, = and →
are omitted).
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Foundational Applications?

No chance to regain a sort of Frege-Russell paradise. But
untyped positive AP is useful for designing a predicative
universe on the top of an underlying rich basis (arithmetic,
models of combinatory logic).
Other chance: restrict AP with modal notions. . . There are
non-normal modalities which allow the system to interpret
PA. . . (C91)
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Undecidability
Problems: between Grishin and Łukasiewicz
Ł-systems
Skolem’s partial solution refined
Paradox again

Prehistory

Difficulties in the foundations of logic (Church, Curry, . . . ),
which follow routes alternative to Russell and Zermelo.

Fitch’s way-out: 1936, JSL: A system of formal logic without an
analogue to the Curry W operator.
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extending Grishin: consistency of URP

strengthening the logic

the case with infinite-valued logic.
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Formal language

Ls is the elementary set theoretic language, which comprises
1 the binary predicate symbol ∈;
2 the logical symbols →, ∧, ∨, ⊗, +, ∃, ∀, the propositional

constants ⊥, >.
3 the abstraction operator {−|−};
4 individual variables (x , y , z, . . .).

⊥ is the absurd proposition; > is the true proposition;→ stands
for a substructural implication: A → B roughly means that B
follows from A via a deduction which uses the assumption A at
most once;∧, ∨ (⊗, +) denote the so-called additive
(multiplicative) conjunction and disjunction of contractionless
logic;finally, ∃, ∀ stand for the usual quantifiers.
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General abstraction operator

Generalized class terms:
if ϕ is a formula, and t(~x) is a term whose free variables occur
in the list ~x , then {t(~x) | ϕ} is a term where
FV ({t(~x)|ϕ}) = FV (ϕ)− {~x}, FV (E) is the set of free variables
occurring in the expression E)
NB: if t(~x) := x , we get usual abstraction. If t(~x) is injective ,
we can derive RAP from AP by choosing as usual:

{t(~u)|A(~u, ~w)} = {v |(∃~x)(v = t(~x)⊗ A(~x , ~w))}
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Extending Grishin

GSR is Grishin’s system with RAP, the schema

(∀~v)(∀~x)(t(~x) ∈ {t(~u)|A(~u, ~v)} ↔ A(~x , ~v)).

(NB: a new binding operator)

Theorem

Cut rule is admissible in GSR and hence GSR is consistent.
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Fixed points again

The fixed point construction need not use standard logic:
contraction free is enough !

Theorem

If fa := {x | 〈x , a〉 ∈ f}, then there is a term If with FV (If ) = f
such that, provably in GSR:

⇒ If =e fIf
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Clearly, using RAP, we can choose (no need of existential
quantifiers):

Df = {〈x , g〉 | x ∈ f (gg)}

NB: why do we restrict logic and yet maintain unrestricted term
formation? See the non-linear feature of the term Df .
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Application I: non-extensionality

Extensionality can now be easily refuted, e.g. for the empty set
∅
Proof’s hint: choose g such that

⇒ g =e {x | x = g ⊗ x = ∅}

Else, show that extensionality implies contraction for arbitrary
formulas.
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Application II: undecidability

Representing combinatory logic CL

The relation “t = s is equationally provable in combinatory
logic”, i.e. formally CL ` t = s is the smallest equivalence
relation on terms, generated by the initial conditions Kab = a
and Sabc = ac(bc), and closed under the inferences:

a = b ⇒ ac = bc

a = b ⇒ ca = cb

CL is essentially undecidable.
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Let TERCL be the set of CL-terms and let TERGS be the set of
GS-terms. Then:

Theorem
There exist:

(i) a translation t̂ : TERCL 7→ TERGS

(ii) a closed term E in GS such that

CL ` t = s ⇔ GS `⇒ 〈̂t , ŝ〉 ∈ E

Hence GS is undecidable
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As to the main steps the proof, by fixed point we can simulate
the syntax of CL, the definition of CL-derivability and natural
numbers.For instance, if we define

0 := ∅;
t + 1 := {t};
n + 1 := n + 1,

it is straightforward to check that the successor axioms become
provable and there exists a closed term ω representing the set
of natural numbers.
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By application of the contraction free nature of the calculus
(e.g., restricted invertibility of the ∃-introduction rule to the right,
given that the antecedent is empty), it is not difficult to check:

1 if GS ` ⇒ t = s , then t ≡ s (“the literal identity property”);
2 if GS ` ⇒ t ∈ ω, then for some natural number n, t ≡ n

(“the ω–evaluation property”).
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Problems

1 Consistency of AP with Grishin’s logic + Dummett’s law?
2 Consistency of AP with Grishin’s logic + Dummett’s law +
∧-commutativity?

Study analytical calculi for Grishin’s logic and its extensions
below classical logic; 
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Hypersequents:

Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n

Standard interpretation

(ΠΓ1 ⇒ Σ∆1) ∨ . . . ∨ (ΠΓn) ⇒ Σ∆n)

where

ΠΓi = A1 ⊗ . . .⊗ Ak , if Γi 6= ∅; else Γi = >;

Σ∆i = B1 ⊕ . . .⊕ Bn, if ∆ 6= ∅; else ∆i = ⊥;
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Hypersequent Calculus IMTL∀

Grishin+Linearity + Quantifiers.
Some crucial inferences

External structural rules, e.g.

G | Γ ⇒ ∆ | Γ ⇒ ∆

G | Γ ⇒ ∆

Communication rule Pottinger, Avron):

G | Γ1,Π1 ⇒ ∆1,Σ1 G | Γ2,Π2 ⇒ ∆2,Σ2

G | Γ1, Γ2 ⇒ ∆1,∆2 | Π1,Π2 ⇒ Σ1,Σ2
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Other examples:

Cut:

G | Γ1 ⇒ ∆1, A G | Γ2, A ⇒ ∆2

G | Γ1, Γ2 ⇒ ∆1,∆2

times:

G | Γ1 ⇒ ∆1, A G | Γ1 ⇒ ∆1, B
G | Γ1, Γ2 ⇒ ∆1,∆2, A⊗ B
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IMTL∀ derives the law of constant domains:

(∀x)(A ∨ B(x)) → A ∨ (∀x)B(x)
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Let GSRL be Grishin’s system with underlying IMTL∀-logic and
the comprehension schema RAP.

Conjecture

GSRL enjoys cut elimination.

Proof: hypersequent calculus
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Many-valued logics?

Summary:
1 Three-valued is not enough (Mow-Shaw-Kwei 1954: can

reproduce a Curry-like paradox);
2 infinitely valued is enough; partial solutions (Chang,

Fenstad);
3 the solution?
4 White’s proof
5 Chang’s proof: generalization?
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Frege Ł-theories and structures

Language: includes basic statements: t = s, Ts (s is true)
TŁ∀ is a theory of self-referential truth based on combinatory
logic, (the finite fragment of) Ł∀ and the fixed point axiom
embodying the natural closure conditions on the truth
predicate:

∀x(T (x , T ) ↔ Tx)

which implies
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Theorem
TŁ∀ proves:

T [x = y ] ↔ x = y

T (x→̇y) ↔ Tx → Ty

T (¬̇x) ↔ ¬Tx

T (∀̇f ) ↔ (∀x)T (fx)

Moreover, if A is arbitrary:

T [A(~x)] ↔ A(~x)

Andrea Cantini Naive abstraction and truth
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NB:formulas are encoded via terms of the underlying
combinatory logic, i.e. it is possible to define a map from
formulas to terms such that

A 7→ [A]

and the free variables of A and [A] coincide. Abstraction can be
defined

{x | A} := λx .[A]
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Comparison: classical Frege structure

T [x = y ] ↔ x = y

T [¬x = y ] ↔ ¬x = y

T (¬̇¬̇a) ↔ Ta

T (x∧̇y) ↔ Tx ∧ Ty

T (¬̇(x∧̇y)) ↔ T (¬̇x) ∨ T (¬̇y)

. . .

If A is T-positive,
T [A(~x)] ↔ A(~x)
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Semantics

A countable structure M with domain M, which has the
form:

〈M, AppM , KM , SM ,=M〉

where: AppM : M ×M → M, KM , SM ∈ M, =M is crisp (its
characteristic function is boolean ), and M defines a
realization of the language of TŁ∀, except the truth
predicate T ;

If t is an arbitrary closed term of Lcat (M ), ‖t‖M ∈ M= the
standard classical value is inductively defined as usual s.t.
‖{x |A}‖ = ‖λx [A]‖ (M omitted).
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Definition

If A is an arbitrary closed formula ofLcat (M ) , EQ is the
characteristic function of crisp equality onM, andϕ ∈[0, 1]ω

‖t = s‖ϕ := EQ(‖t‖M , ‖s‖M)

‖Tt‖ϕ := ϕ(‖t‖)
‖A → B‖ϕ := ‖A‖ϕ ⇒L ‖B‖ϕ

‖¬A‖ϕ := ¬L‖A‖ϕ

‖∀viA‖ϕ := inf{‖A(a)‖ϕ | a ∈ M}
‖∃viA‖ϕ := sup{‖A(a)‖ϕ | a ∈ M}
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In the previous definition we have of course used the
Łukasiewicz logical functions:

1 a ⇒L b = min{1, 1− a + b};
2 ¬La = 1− a

It can be verified that

a⊗ b = max{0, a + b − 1};
a + b = max{1, a + b}
a ∧ b = min{a, b};
a ∨ b = max{a, b}
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Definition
Every sentenceA defines a function

FA : [0, 1]ω → [0, 1], (3)

such that, ifϕ ∈[0, 1]ω, thenFA(ϕ) = ‖A‖ϕ. If A(v) is a formula
with the free variable shown only, then we define a function

FA : [0, 1]ω → [0, 1]ω, (4)

such that, ifϕ ∈[0, 1]ω, thenFA(ϕ)(k) = ‖A(ak )‖ϕ (ak being the
k -th element ofM in a fixed enumeration).
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Problem

Findϕ ∈ [0, 1]ω such that, wheneverTŁ∀` A(a0, . . . , ak ), then
‖A(a0, . . . , ak )‖ϕ = 1, for every sequencea0, . . . , ak of elements of
M (k being such thatFV (A) ⊆ {x0, . . . , vk}).

Continuity for the truth operator? Partial result.
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Lemma

If A(v) is a quantifier-free formula with at most one free
variable, then the associated operator FA : [0, 1]ω → [0, 1]ω is
continuous (with respect to the product topology)

Hence:

Lemma (“Tychonoff-Schauder. . . ”)

Every continuous function F from [0, 1]ω into itself has a fixed
point, i.e. there exists ϕ such that F (ϕ) = ϕ.
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Let qf-TŁ∀ be the Frege theory restricted to quantifier-free
conditions.

Theorem

There exists ϕ ∈ [0, 1]ω , such that if qf-TŁ∀` A(v0, . . . , vk ) and
FV (A) ⊆ {v0, . . . , vk}, then

‖A(a0, . . . ak‖ϕ = 1

for every a0, . . . ak of M.
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Proof

Apply the fixed point lemma to the function FQ defined by the
truth defining operator Q for quantifier-free conditions. Then
there exists ϕ of [0, 1]ω such that FQ(ϕ) = ϕ; hence, for every
a ∈ ω,

‖Q(a, T )‖ϕ = ‖T (a)‖ϕ (5)

which implies ‖(∀x)(Q(x , T ) ↔ T (x)‖ϕ = 1. �
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Corollary

The quantifier free abstraction schema is consistent in the logic
Ł∀.

This strengthens Skolem’s original proof (for the non-uniform
comprehension principle).
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A stumbling block: ω-inconsistency

Restall 1992, Hajek-Paris-Shepherdson 2000, Yatabe 2005:
adding ω to Ł-logic with induction schema and ”ω is crisp”
results into an inconsistency.
Choose R by recursion such that

k ∈ Ψ(x) ↔ (k = 0⊗ x /∈ x) ∨
∨(∃n ∈ ω)(k = n + 1⊗ (x ∈ x → n ∈ Ψ(x))))

x ∈ R ↔ (∃n ∈ ω)(n ∈ Ψ(x))

Andrea Cantini Naive abstraction and truth
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Informally x ∈ R is equivalent to

x /∈ x ∨ (x ∈ x → x /∈ x) ∨ (x ∈ x → (x ∈ x → x /∈ x)) ∨ . . .

By contraction this amount to x /∈ R, i.e. Russell’s set.

Andrea Cantini Naive abstraction and truth



Introduction
Standard systems

Non-standard systems
Appendix

Grishin’s calculus
Undecidability
Problems: between Grishin and Łukasiewicz
Ł-systems
Skolem’s partial solution refined
Paradox again

Informally x ∈ R is equivalent to

x /∈ x ∨ (x ∈ x → x /∈ x) ∨ (x ∈ x → (x ∈ x → x /∈ x)) ∨ . . .

By contraction this amount to x /∈ R, i.e. Russell’s set.

Andrea Cantini Naive abstraction and truth



Introduction
Standard systems

Non-standard systems
Appendix

Grishin’s calculus
Undecidability
Problems: between Grishin and Łukasiewicz
Ł-systems
Skolem’s partial solution refined
Paradox again

Informally x ∈ R is equivalent to

x /∈ x ∨ (x ∈ x → x /∈ x) ∨ (x ∈ x → (x ∈ x → x /∈ x)) ∨ . . .

By contraction this amount to x /∈ R, i.e. Russell’s set.

Andrea Cantini Naive abstraction and truth



Introduction
Standard systems

Non-standard systems
Appendix

Grishin’s calculus
Undecidability
Problems: between Grishin and Łukasiewicz
Ł-systems
Skolem’s partial solution refined
Paradox again

Hence by above and by Ł-logic (IP-law!):

R ∈ R → (∃k ∈ ω)(k ∈ Ψ(R))

(∃k)(R ∈ R → k ∈ ω ⊗ k ∈ Ψ(R))

(∃k ∈ ω)(R ∈ R → k ∈ Ψ(R))

(∃k ∈ ω)(k + 1 ∈ Ψ(R))

(∃k ∈ ω)(k ∈ Ψ(R))

R ∈ R
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The blue step uses k ∈ ω ∨ k /∈ ω, Indeed assume

R ∈ R → k ∈ ω ⊗ k ∈ Ψ(R)

We want
k ∈ ω ⊗ (R ∈ R → k ∈ Ψ(R))

If k ∈ ω, we are done. Else, let k /∈ ω. Then
¬(k ∈ ω ⊗ k ∈ Ψ(R)) and hence ¬R ∈ R, which implies by
definition 0 ∈ Ψ(R), i.e. since 0 ∈ ω,

(∃k ∈ ω)(k ∈ Ψ(R))

(∃k ∈ ω)(R ∈ R → k ∈ Ψ(R))
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Problems: between Grishin and Łukasiewicz
Ł-systems
Skolem’s partial solution refined
Paradox again

For each k ∈ ω, k /∈ Ψ(R)).
By outer induction:
k = 0: this is simply R ∈ R, which implies ¬¬R ∈ R, i.e.
0 ∈ Ψ(R)

By IH, let k /∈ Ψ(R). Then ¬(R ∈ R ⊗ k ∈ Ψ(R)), i.e.
k + 1 /∈ Ψ(R).
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Using crispness of ω and the induction rule:

A(0) (∀x ∈ ω)(A(x) ↔ A(x + 1))

(∀x ∈ ω)A(x)

one transforms the previous argument in the derivation of a
contradiction.
NB: if the induction rules is restricted to ω-free conditions, the
theory is consistent (Hajek 2005).
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Induction rule vs. Induction axiom

Using the induction rule one proves:

(∀x)(x ∈ ω ↔ x ∈ ω ⊗ x ∈ ω)

If the axiom is accepted, then one would accept for each n ∈ ω

A(0)∧ (A(0) → A(1))∧ . . . (A(n−1) → A(n)) → A(0)∧ . . .∧A(n)

which is an instance of a classical tautology which is not
substructural . . .
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Sharpening ω-inconsistency

Let QF-GSRω be the ”subsystem” of GSR which (i) has pairing
and projection operators as primitive with corresponding natural
axioms; (ii) RAP restricted to quantifier-free formulas; (iii)
ω-crispness:

t ∈ ω ⇒ t ∈ ω ⊗ t ∈ ω;

(iv) the IP-rule: if x /∈ FV (A),

A ⇒ (∃x)B(x)

⇒ (∃x)(A → B(x))

Theorem

QF-GSRω is ω-inconsistent

Proof: the recursion theorem still holds. . .
Andrea Cantini Naive abstraction and truth
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Arithmetic in substructural logic = classical arithmetic

Fact. The class of crisp conditions is closed under elementary
operations.
Hence, once = is crisp, by induction one shows that every
arithmetical formula is crisp!
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GS-rules

>-rule:
Γ ⇒ ∆, >

∃-rules:

Γ, A[x := a] ⇒ ∆

Γ,∃xA ⇒ ∆

Γ ⇒ ∆, A[x := s]

Γ ⇒ ∆,∃xA

Proviso: a /∈ FV (Γ, ∃xA ⇒ ∆).

∧-rules (i = 1, 2):

Γ ⇒ ∆, A Γ ⇒ ∆, B
Γ ⇒ ∆, A ∧ B

Γ, Ai ⇒ ∆

Γ, A1 ∧ A2 ⇒ ∆
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→-rules:

Γ, A ⇒ B, ∆

Γ ⇒ A → B, ∆

Γ ⇒ ∆, A Γ′, B ⇒ ∆′

Γ, Γ′, A → B ⇒ ∆, ∆′

⊗-rules:

Γ ⇒ ∆, A Γ′ ⇒ ∆′, B
Γ, Γ′ ⇒ ∆,∆′, A ⊗ B

Γ, A , B, ⇒ ∆

Γ, A ⊗ B ⇒ ∆

Cut:
Γ1 ⇒ ∆1 A A, Γ2 ⇒ ∆2

Γ1, Γ2 ⇒ ∆1,∆2
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Algebraic Preliminaries

An ML-algebra is a commutative integral bounded residuated
lattice, i.e. a structure

〈L,∨,∧,⊗,→,>,⊥〉

such that
1 〈L,∨,∧〉 is a lattice with maximum >, minimum ⊥;
2 〈L,⊗,>〉 is a commutative semigroup with unit >;
3 ⊗ and → form an adjoint pair: for all x , y , z ∈ L,

x ≤ (y → z) iff x ⊗ y ≤ z.
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ML-algebras: semantics for the multiplicative additive
fragments of intuitionistic affine linear logic .
Define:

¬x = (x → >); x + y = ¬(¬x ⊗ ¬y)

An ML-algebras is involutive (linear, divisible ) if it satisfies in
addition (in the given order):

1 INV: ¬¬x = x ;
2 LIN: (x → y) ∨ (y → x);
3 DIV: x ∧ y = x ⊗ (x → y).
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ML-Logics

1) IML = logic of involutive ML-algebras (Grishin);
2) MTL= logic of linear ML-algebras;
3) IMTL= logic of involutive linear ML-algebras;
4) BL= logic of divisible linear ML-algebras (Hajek);
5) Ł = logic of involutive divisible linear ML-algebras
(Łukasiewicz)
NB: adding contraction x ⊗ x = x to BL yields the
Gödel-Dummett logic, and to ML (IML) intuitionistic (classical)
logic.
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