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� Computational properties of a logic L can be inherited by a
programming language P through a transformation of L into
a type assignment system for P, in the spirit of
Curry-Howard isomorphism.

� The standard approach does not hold for the Light Logics,
since the modality controlling the duplication produce a
mismatch between the cut-elimination and the β-reduction,
so loosing both the subject reduction and the complexity
bound.

� In general such a mismatch is overcame by designing the
type assignment system for P using the principles of L,
arranged in ad hoc way.

� The consequences are that the properties of P are no-more
inherited directly by L, but they need to be proved again.

� We will show another approach to the problem, taking the
Soft Linear Logic (SLL) as case study.
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Curry-Howard
Logics ⇐⇒ Type Assignment

proof decoration

Γ ⊢ σ =⇒ Γ∗ ⊢ M : σ

erasing terms

Γ ⊢ σ ⇐= Γ∗ ⊢ M : σ

cut-elimination ⇐⇒ reduction rules
(normalization)
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σ ∈ Γ
Γ ⊢ σ

(A)

Γ, σ ⊢ τ

Γ ⊢ σ → τ
(→ I) Γ ⊢ σ → τ Γ ⊢ σ

Γ ⊢ τ
(→ E)
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σ ∈ Γ
Γ ⊢ σ

(A)

Γ, σ ⊢ τ

Γ ⊢ σ → τ
(→ I) Γ ⊢ σ → τ Γ ⊢ σ

Γ ⊢ τ
(→ E)

x :σ ∈ Γ
Γ ⊢ x :σ

(A)

Γ, x :σ ⊢ M :τ

Γ ⊢ λx.M :σ → τ
(→ I) Γ ⊢ M :σ → τ Γ ⊢ N :σ

Γ ⊢ MN :τ
(→ E)

Proofs normalization in LJ implies termination for the typed terms.
LJ type assignment is the core of the programming language ML.
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A ⊢ A
(Id)

Γ ⊢ A ∆, A ⊢ B

Γ, ∆ ⊢ B
(cut)

Γ, A ⊢ B

Γ ⊢ A ⊸ B
(⊸ R)

Γ ⊢ A B, ∆ ⊢ C

A ⊸ B, Γ, ∆ ⊢ C
(⊸ L)

Γ ⊢ A α 6∈ FV (Γ)

Γ ⊢ ∀α.A
(∀R)

Γ, B[C/α] ⊢ A

Γ, ∀α.B ⊢ A
(∀L)

Γ,

n times
︷ ︸︸ ︷

A . . . , A ⊢ C

Γ, !A ⊢ C
(mpx) Γ ⊢ A

!Γ ⊢!A
(sp)

n is the rank of the rule (mpx).
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PTIME Soundness

The cut elimination procedure applied on a proof Π of size n
stops after a number of steps

≤ |Π| × n2d

where:
- |Π| is the size of Π
- n is the maximum rank of a multiplexor in Π
- d is the maximum number of nested applications of rule (sp) in
Π (depth of the proof).

PTIME Completeness

Every PTIME Turing Machine can be encoded by a SLL proof ,
in such a way that data are encoded by proofs with depth 0.



A standard decoration of SLL by λ-terms
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x : A ⊢ x : A
(Id)

Γ ⊢ M : A ∆, x : A ⊢ N : B Γ#∆

Γ, ∆ ⊢ N [M/x] : B
(cut)

Γ ⊢ M : A x : B, ∆ ⊢ N : C Γ#∆ y fresh

Γ, y : A ⊸ B, ∆ ⊢ N [yM/x] : C
(⊸ L)

Γ, x : A ⊢ M : B

Γ ⊢ λx.M : A ⊸ B
(⊸ R)

Γ ⊢ M : A
!Γ ⊢ M :!A

(sp)
Γ, x0 : A, ..., xn : A ⊢ M : B

Γ, x :!A ⊢ M [x/x0, ..., x/xn] : B
(mpx)

Γ ⊢ M : A
Γ ⊢ M : ∀α.A

(∀R)
Γ, x : A[B/α] ⊢ M : C

Γ, x : ∀α.A ⊢ M : C
(∀L)
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The decorated system does not enjoy subject reduction.
Let M ≡ y((λz.sz)w)((λz.sz)w) and
A = B ⊸ B ⊸ D, E = D ⊸!B.
Let Π be the derivation:

s : E ⊢ λz.sz : E t : E, w : D ⊢ tw :!B

s : E, w : D ⊢ (λz.sz)w :!B
(cut)

y : A, r : B, l : B ⊢ yrl : D

y : A, x :!B ⊢ yxx : D
(m)

y : A, s : E, w : D ⊢ y((λz.sz)w)((λz.sz)w) : D
(cut)

M contains two identical redexes (λz.sz)w. But every
cut-elimination step would reduce both the redexes in the same
time, so loosing the corresponding between cut-elimination and
β-reduction.
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(m)

y : A, s : E, w : D ⊢ y((λz.sz)w)((λz.sz)w) : D
(cut)

The red subderivation has a modal conclusion, while a not modal
context. So it cannot be duplicated.

There are two different subterms (syntactically equal) in the
language, corresponding to the red subderivation. So β-reducing
only one of them would not correspond to a correct logical proof.

Conclusion: a cut-elimination steps does not correspond to a
β-reduction, so the polynomial bound on the logic is not
inherited by the language.
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The (cut) rule can be split into three different rules, according to
the shape of the formulae, of the contexts and of the derivation:

Linear cut

Γ ⊢ M : A ∆, x : A ⊢ N : B A not modal

Γ, ∆ ⊢ N [M/x] : B
(L cut)

It corresponds to a linear substitution. In case N ≡ N [xQ] and
M ≡ λx.P , it generates a β-redex where the bound variable
occurs exactly once, and the cut-elimination corresponds to a
β-reduction.
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The (cut) rule can be split into three different rules, according to
the shape of the formulae, of the contexts and of the derivation:

Duplication cut

Π⊲!Γ ⊢ M :!A ∆, x :!A ⊢ N : B Π duplicable (*)

!Γ, ∆ ⊢ N [M/x] : B
(D cut)

It corresponds to a substitution where the proof Π is copied n
times, if n is the degree of the multiplexor generating x :!A. In
case N ≡ N [xQ] and M ≡ λx.P , it generates a β-redex (with n
occurrences of the bound variable) and the cut-elimination
corresponds to a β-reduction.

(*) duplicable denotes that in Π the ! has been introduced by a rule (sp).
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The (cut) rule can be split into three different rules, according to
the shape of the formulae, of the contexts and of the derivation:

Sharing cut

Π ⊲ Γ ⊢ M :!A ∆, x :!A ⊢ N : B Π not duplicable

Γ, ∆ ⊢ N [M/x] : B
(S cut)

It corresponds to a linear substitution. In case N ≡ N [xQ] and
M ≡ λx.P , it generates a β-redex. But, x can occur in N more
than once, so a single cut elimination can correspond to more
than one β-reduction step.
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� Let Π be a SLL derivation, and let Π∗ its decoration by the
λ-term M . If Π does not contain S-cuts, then the number of
cut-elimination steps in the normalization of Π is ≤ of the
number of β-reductions in the normalization of M . Since it
is easy to prove that the size of M is less that the size of Π,
then the polynomial bound for M follows.

� If Π contains S-cuts, the number of β-reductions in the
normalization of M can be greater than the number of
cut-elimination steps in the normalization of Π. So the
typing does not induce any property on the complexity of M .
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We want to restrict SLL in such a way that:
- S-cuts are forbidden.
- The polynomial properties are preserved.
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We want to restrict SLL in such a way that:
- S-cuts are forbidden.
- The polynomial properties are preserved.

Just erasing the rule (S-cut) is not sufficient, since the cut
elimination precedure could create new (S-cut) rules. So we
need to restrict both the rules and the formulae.
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The formulae are restricted in the following way:
A ::= α | σ ⊸ A | ∀α.A (Linear Formulae)
σ ::= A |!σ (Formulae)

The rules are restricted in the following way:
- axioms introduce linear formulae.
- weakening introduces linear formulae.
- the (cut) can be either an L-cut or a D-cut
- the other rules are arranged in such a way to preserve the
correct syntax of formulae.
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Essential Soft Linear Logic (ESLL)

Workshop ASFPG Hamburg, 14-16/4/2008 – 14 / 25

A ⊢ A
(Id)

Γ ⊢ τ A, ∆ ⊢ σ

Γ, τ ⊸ A, ∆ ⊢ σ
(⊸ L)

Γ, σ ⊢ A

Γ ⊢ σ ⊸ A
(⊸ R)

Γ ⊢
! τ ∆, τ ⊢ σ

Γ, ∆ ⊢ σ
(cut)

Γ ⊢ σ
Γ, A ⊢ σ

(w)
Γ ⊢ σ
!Γ ⊢!σ

(sp)
Γ, A[B/α] ⊢ σ

Γ,∀α.A ⊢ σ
(∀L)

Γ,

n
z }| {

τ, ..., τ ⊢ σ

Γ, !τ ⊢: σ
(m)

Γ ⊢ A
Γ ⊢ ∀α.A

(∀R)

Γ ⊢
! τ means that, if τ is modal then all formulae in Γ are modal.

So the (cut) rule is either a L or a D cut.



Properties of ESLL

Logics and TA

LJ

SLL

SLL properties

SLL and Λ
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cut and β

restricting SLL

ESLL

⊲ ESLL properties

ESLL properties

ESTA

Properties of ESTA

Properties of ESTA

nat ded

nat ded

nat ded

NESLL

STA
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Property
The set of ESLL proofs is a proper subset of the set of SLL
proofs.

So from the polynomial soundness of SLL is follows as corollary:

ESLL PTIME Soundness

The cut elimination procedure applied on an ESLL-proof Π of
size n stops after a number of steps

≤ |Π| × n2d

where:
- |Π| is the size of Π
- n is the maximum rank of a multiplexor in Π
- d is the maximum number of nested applications of rule (sp) in
Π (depth of the proof).
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PTIME Completeness

Every PTIME Turing Machine can be encoded by a ESLL proof
, in such a way that data are encoded by proofs with depth 0.
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x : A ⊢ x : A
(Id)

Γ ⊢ M : τ x : A, ∆ ⊢ N : σ Γ#∆ y fresh

Γ, y : τ ⊸ A, ∆ ⊢ N [yM/x] : σ
(⊸ L)

Γ, x : σ ⊢ M : A

Γ ⊢ λx.M : σ ⊸ A
(⊸ R)

Γ ⊢ M : A ∆, x : A ⊢ N : σ Γ#∆

Γ, ∆ ⊢ N [M/x] : σ
(cut)

Γ ⊢ M : σ
Γ, x : A ⊢ M : σ

(w)
Γ ⊢ M : σ
!Γ ⊢ M :!σ

(sp)
Γ, x : A[B/α] ⊢ M : σ

Γ, x : ∀α.A ⊢ M : σ
(∀L)

Γ, x1 : τ, ..., xn : τ ⊢ M : σ

Γ, x :!τ ⊢ M [x/x1, ..., x/xn] : σ
(m) Γ ⊢ M : A

Γ ⊢ M : ∀α.A
(∀R)
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Property Let M be such that Π ⊲ Γ ⊢ M : σ, for some Π, Γ, σ.

� The size of M is less than the size of Π.
� The number of β-reductions necessary to normalize M is less

or equal to the number of cut-elimination steps necessary to
normalize Π.

Corollary [Polynomial soundness]
Let M be such that Π ⊲ Γ ⊢ M : σ, for some Π, Γ, σ. Then M
reduces to normal form in a number of β-reduction steps

≤ |M | × n2d

where:
- |M | is the number of symbols of M
- n is the maximum rank of a multiplexor in Π,
- d is the depth of Π.
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nat ded

nat ded

nat ded
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FPTIME Completeness
Let a function F be computed in polynomial time P , where
deg(P ) = m, and in polynomial space Q, where deg(Q) = l, by
a Turing Machine M. Then it is λ-definable by a term M
typable in STA as !max(l,m,1)+1

S ⊢ M : S2m+1.
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� A logic in sequent calculus style can be decorated by
λ-terms, but:

� The same λ-term decorates some proofs
� Terms are built through substitution
� It is not possible to curry out proofs by induction on the

structure of terms
� In fact the Curry-howard isomorphism is stated for logics in

natural deduction style.
� In order to preserve the complexity properties we need to

design a transformation of ESLL in natural deduction style,
in such a way that cut-free proofs are translated in normal
proofs and every cut-elimination step is trasformed into a
normalization step.
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Let Π∗ be the naturale deduction version of Π.
The rule

Π1 : Γ ⊢ σ Π2 : A, ∆ ⊢ τ

Γ, ∆, σ ⊸ A ⊢ τ
(⊸ L)

is translated by replacing the axiom A ⊢ A in Π∗

2 by:

σ ⊸ A ⊢ σ ⊸ A
(Ax)

Π∗

1 : Γ ⊢ σ

σ ⊸ A, Γ ⊢ A
(⊸ E)

so obtaining a proof of Γ, ∆, σ ⊸ A ⊢ τ .
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The rule

Π2 ⊲ Γ2, A ⊢ τ Π1 ⊲ Γ1,⊢ σ

Γ1, Γ2, σ ⊸ A ⊢ τ
(⊸ L)

Π3 ⊲ ∆, σ ⊢ A

∆ ⊢ σ ⊸ A
(⊸ R)

Γ1, Γ2, ∆ ⊢ τ
(cut)

is traslated by replacing the axiom A ⊢ A in Π∗

2 by:

Π∗

3 ⊲ ∆, σ ⊢ A

∆ ⊢ σ ⊸ A
(⊸ I)

Π∗

1 ⊲ Γ1 ⊢ σ

Γ1, ∆ ⊢ τ
(⊸ E)

so obtaining a proof of Γ1, Γ2, ∆ ⊢ τ .

The translation of a cut is a detour!



NESLL
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A ⊢ A
(Ax) Γ ⊢ σ

Γ, A ⊢ σ
(w)

Γ, σ ⊢ A

Γ ⊢ σ ⊸ A
(⊸ I) Γ ⊢ σ ⊸ A ∆ ⊢ A

Γ, ∆ ⊢ A
(⊸ E)

Γ,

n
︷ ︸︸ ︷

σ, . . . , σ ⊢ A

Γ, !σ ⊢ A
(mpx) Γ ⊢ σ

!Γ ⊢!σ
(sp)

Γ ⊢ A α 6∈ FV (Γ)

Γ ⊢ ∀α.A
(∀I)

Γ ⊢ ∀α.A
Γ ⊢ A[B/α]

(∀E)



STA
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x : A ⊢ x : A
(Ax) Γ ⊢ M : σ

Γ, x : A ⊢ M : σ
(w)

Γ, x : σ ⊢ M : A

Γ ⊢ λx.M : σ ⊸ A
(⊸ I)

Γ ⊢ M : σ ⊸ A ∆ ⊢ N : A Γ#∆

Γ, ∆ ⊢ MN : A
(⊸ E)

Γ, x1 : σ, . . . , xn : σ ⊢ M : A

Γ, x :!σ ⊢ M [x/x1, ..., x/xn] : A
(mpx) Γ ⊢ σ

!Γ ⊢!σ
(sp)

Γ ⊢ A α 6∈ FV (Γ)

Γ ⊢ M : ∀α.A
(∀I)

Γ ⊢ M : ∀α.A
Γ ⊢ M : A[B/α]

(∀E)

NOTE. Γ#∆ denotes that the two contexts have disjoint variables.
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Property Let M be such that Π ⊲ Γ ⊢ M : σ, for some Π, Γ, σ.

� The size of M is less than the size of Π.
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normalize Π.

Corollary [Polynomial soundness]
Let M be such that Π ⊲ Γ ⊢ M : σ, for some Π, Γ, σ. Then M
reduces to normal form in a number of β-reduction steps

≤ |M | × n2d

where:
- |M | is the number of symbols of M
- n is the maximum rank of a multiplexor in Π,
- d is the depth of Π.
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FPTIME Completeness
Let a function F be computed in polynomial time P , where
deg(P ) = m, and in polynomial space Q, where deg(Q) = l, by
a Turing Machine M. Then it is λ-definable by a term M
typable in STA as !max(l,m,1)+1

S ⊢ M : S2m+1.
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