On contraction and the modal fragment

Thomas Studer (joint work with Kai Brünnler and Dieter Probst)

Institute of Computer Science and Applied Mathematics University of Bern

April 2008

 $u^{\scriptscriptstyle b}$

- Contraction is the reason for the undecidability of first-order logic
- If contraction is excluded, then there are no infinite paths in the proof search and thus derivability becomes decidable
- There is no syntactic characterization available for the derivable formulae of a contraction free fragment of first-order logic
- We present a one-sided sequent calculus T in which only a controlled form of contraction is available. T is complete with respect to the modal fragment of first-order logic.

- Introduction
- The modal fragment
- A calculus with controlled contraction
- Multi-modal logic
- Completeness

The language of the modal fragment

Definition

The formulae of \mathcal{L}_1^M are defined inductively as follows.

- If P is a unary relation symbol, then P(u) and its negation $\sim P(u)$ are (atomic) \mathcal{L}_1^M formulae for every variable u.
- **2** If A and B are \mathcal{L}_1^M formulae with $\mathsf{FV}(A) = \mathsf{FV}(B)$ then $A \wedge B$ and $A \vee B$ are \mathcal{L}_1^M formulae.
- 3 Let R be a binary relation symbol and B(v) be an \mathcal{L}_1^M formula. Then

 $\forall v (\sim R(u, v) \lor B(v)) \text{ and } \exists v (R(u, v) \land B(v))$

are \mathcal{L}_1^M formulae for every variable u which is different from v.

Note that an \mathcal{L}_1^M formula contains exactly one variable free. A sequent Γ, Δ, \ldots is a finite multiset of formulae.

The one-sided sequent calculus T

Axioms:

$$\Phi, P, \sim P \quad (Ax).$$

Propositional rules:

$$\frac{\Phi, A, B}{\Phi, A \vee B} \quad (\vee), \qquad \qquad \frac{\Phi, A \quad \Phi, B}{\Phi, A \wedge B} \quad (\wedge),$$

Quantifier rules:

$$rac{\Phi, B(u)}{\Phi, orall u B(u)}$$
 (\(

where we assume that the variable u does not occur free in the conclusion $\Phi, \forall uB(u),$ and

$$\frac{\Phi, B(u)}{\Phi, \exists u B(u)} \quad (\exists c).$$

By induction on the length of derivations, we can easily see that a weakening lemma holds for T.

Lemma

For all sequents Γ and Δ we have $\mathsf{T} \vdash \Gamma \Longrightarrow \mathsf{T} \vdash \Gamma, \Delta$.

Remark

If we replace the rule $(\exists c)$ with the following

$$\frac{\Phi, \exists u B(u), B(u)}{\Phi, \exists u B(u)} \quad (\exists),$$

then we obtain a system which is complete for full first-order logic.

The language \mathcal{L}_M of multi-modal logic comprises countably many atomic propositions p_1, p_2, \ldots and the symbols \sim (atomic negation), \vee (disjunction), \wedge (conjunction), \Diamond_i and \Box_i (modal operators) for every natural number i.

Axioms:

$$\Gamma, p, \sim p \quad (Ax).$$

Propositional rules:

$$\frac{\Gamma, A, B}{\Gamma, A \vee B} \quad (\vee), \qquad \qquad \frac{\Gamma, A \quad \Gamma, B}{\Gamma, A \wedge B} \quad (\wedge).$$

Modal rules:

$$\frac{\Gamma, A}{\Diamond_i \Gamma, \Box_i A, \Sigma} \quad (\Box)$$

where $\Diamond_i \{B_1, \ldots, B_k\} := \{ \Diamond_i B_1, \ldots, \Diamond_i B_k \}.$

Completeness of K

Theorem

The system K is sound and complete for \mathcal{L}_M formulae.

Proof. We call a finite set Φ of \mathcal{L}_M formulae saturated if

 $\bullet \mathsf{K} \not\vdash \Phi,$

- 2 $A \wedge B \in \Phi$ implies $A \in \Phi$ or $B \in \Phi$, and
- $\ \, {\bf 3} \ \, A \lor B \in \Phi \ \, {\rm implies} \ \, A \in \Phi \ \, {\rm and} \ \, B \in \Phi.$

It is easy to show that

for each sequent Δ with K $\not\vdash \Delta$, there exists a saturated set Φ such that Φ is a superset of the underlying set of Δ .

(1)

We define the Kripke structure $\mathcal{M} = (W, R_1, \dots, R_n, \lambda)$ as follows:

- W consists of all saturated sets,
- $\label{eq:anderson} \textbf{@} \mbox{ for any } \Phi, \Psi \in W \mbox{ we set } (\Phi, \Psi) \in R_i \mbox{ if } \{A \ : \ \Diamond_i A \in \Phi\} \subseteq \Psi,$

By induction on the structure of the formula A we can show that

for all formulae A and all $\Phi \in W$ we have $A \in \Phi \Rightarrow \mathcal{M}, \Phi \not\models A.$ (2)

We only show the case for $A = \Box_i B$. We have $\mathsf{K} \not\vDash B, \{C : \Diamond_i C \in \Phi\}$, since otherwise by the (\Box) rule we would obtain $\mathsf{K} \vdash \Phi$ which contradicts Φ saturated. By (1) there exists Ψ saturated with $B, \{C : \Diamond_i C \in \Phi\} \subseteq \Psi$. By the induction hypothesis we obtain $\mathcal{M}, \Psi \not\models B$. The definition of R_i gives us $(\Phi, \Psi) \in R_i$. Hence we conclude $\mathcal{M}, \Phi \not\models \Box_i B$. To obtain completeness of K assume $\mathsf{K} \not\vdash A$ for some formula A. By (1) there exits a saturated set Φ which contains A. By (2) we find $\mathcal{M}, \Phi \not\models A$. Thus A is not valid.

The standard translation $ST_u(\cdot)$

$$\begin{array}{l} \label{eq:structure} {\rm I} \ {\rm ST}_u([\sim]p_i) := [\sim]P_i(u), \\ \mbox{$\rm 0$} \ {\rm ST}_u(A*B) := {\rm ST}_u(A)*{\rm ST}_u(B) \ {\rm for} \ * \in \{\lor,\land\}, \\ \mbox{$\rm 0$} \ {\rm ST}_u(\Box_i A) := \forall v(\sim R_i(u,v) \lor {\rm ST}_v(A)), \\ \mbox{$\rm 0$} \ {\rm ST}_u(\Diamond_i A) := \exists v(R_i(u,v) \land {\rm ST}_v(A)), \\ \mbox{$\rm 0$} \ {\rm ST}_v([\sim]p_i) := [\sim]P_i(v), \\ \mbox{$\rm 0$} \ {\rm ST}_v(A*B) := {\rm ST}_v(A)*{\rm ST}_v(B) \ {\rm for} \ * \in \{\lor,\land\}, \\ \mbox{$\rm 0$} \ {\rm ST}_v(\Box_i A) := \forall u(\sim R_i(v,u) \lor {\rm ST}_u(A)), \\ \mbox{$\rm 0$} \ {\rm ST}_v(\Box_i A) := \exists u(R_i(v,u) \land {\rm ST}_u(A)). \\ \end{array}$$

where v is a variable different from u. For a sequent $\Phi = A_1 = A_2$ of C_{22} form

For a sequent $\Phi = A_1, \ldots, A_n$ of \mathcal{L}_M formulae, we define $ST_u(\Phi) = ST_u(A_1), \ldots, ST_u(A_n)$.

Remark

If we identify \mathcal{L}_1^M formulae that differ only in the names of bound variables (whether an \mathcal{L}_1^M formula is provable in T does not depend on the names of its bound variables), then each \mathcal{L}_1^M formula A(u)is the standard translation $ST_u(C)$ of some \mathcal{L}_M formula C, and conversely, for each \mathcal{L}_M formula C, $ST_u(C)$ is an \mathcal{L}_1^M formula.

Lemma

Let Φ be a sequent of \mathcal{L}_M formulae. Then

$$\mathsf{K} \stackrel{n}{\vdash} \Phi \quad \Longrightarrow \quad \mathsf{T} \vdash \mathsf{ST}_u(\Phi).$$

for each variable u of \mathcal{L}_1 .

Proof by induction on n

Case (\Box): let $\Phi := \Diamond_i \Psi, \Box_i A, \Xi$ and $\Gamma := \mathsf{ST}_u(\Phi)$ which is then of the form

$$\exists v(R_i(u,v) \land B_1(v)), \dots, \exists v(R_i(u,v) \land B_k(v)), \forall v(\sim R_i(u,v) \lor C(v)), \Sigma.$$

By I.H. we get $\mathsf{T} \vdash B_1(v), \ldots, B_k(v), C(v)$. Weakening yields $\mathsf{T} \vdash B_1(v), \ldots, B_k(v), \sim R_i(u, v), C(v)$. Now consider the following derivation in T where $\Delta := B_2(v), \ldots, B_k(v)$.

$$\frac{R_i(u,v), \Delta, \sim R_i(u,v), C(v) \qquad B_1(v), \Delta, \sim R_i(u,v), C(v)}{R_i(u,v) \land B_1(v), \Delta, \sim R_i(u,v), C(v)} \\
\frac{R_i(u,v) \land B_1(v), \Delta, \sim R_i(u,v), C(v)}{\exists v(R_i(u,v) \land B_1(v)), \Delta, \sim R_i(u,v), C(v)}$$

 $\begin{array}{c} \exists v(R_i(u,v) \land B_1(v)), \ldots, \exists v(R_i(u,v) \land B_k(v)), \sim R_i(u,v), C(v) \\ \hline \exists v(R_i(u,v) \land B_1(v)), \ldots, \exists v(R_i(u,v) \land B_k(v)), \sim R_i(u,v) \lor C(v) \\ \hline \exists v(R_i(u,v) \land B_1(v)), \ldots, \exists v(R_i(u,v) \land B_k(v)), \forall v(\sim R_i(u,v) \lor C(v)) \\ \hline \text{Again applying weakening yields } \mathsf{T} \vdash \Gamma \text{ which finishes our proof.} \end{array}$

Theorem

For each \mathcal{L}_1^M formula A(u),

$$\mathsf{T} \vdash A(u) \quad \Longleftrightarrow \quad \models A(u).$$

Proof.

The direction from left to right is the standard soundness result. To show the direction from right to left assume that A(u) is valid. There is an \mathcal{L}_M formula B such that $ST_u(B) = A(u)$ (modulo renaming of bound variables). Thus $ST_u(B)$ is a valid \mathcal{L}_1^M formula and therefore, B is valid with respect to the Kripke semantics. Completeness of K gives us $K \vdash B$. By the above lemma, we finally conclude $T \vdash A(u)$.

- Proof-theoretic answer to the question about the robust decidability of modal logics
- Complements the model-theoretic and automata-theoretic point of view on this issue
- Controlled contraction provides a better explanation than the two variable fragment
- We obtain that K_n is in PSPACE
- Is there a syntactic characterization of formulae provable without contraction?
- Can we characterize guarded fragments in terms of some restriction of contraction?

