John von Neumann and the Evolutionary Growth of Complexity "Vague, unscientific, and imperfect ..."

Barry McMullin barry.mcmullin@dcu.ie

The Rince Institute, Dublin City University

Complexity: Theoretical Foundations & Practical Implications Altonaer Stiftung für Philosophische Grundlagenforschung (Beamer Presentation)

- Kinematic Framework
 - Tinker toys (Lego Technic)?
 - Not tractable (at least, not in 1940s/1950s; today maybe simulate in an off the shelf physics engine; see also this 16-bit ALU in minecraft!)
- Cellular ("Tesselation") Framework (Ulam/von Neumann)

Various Frameworks considered:

- Kinematic Framework
 - Tinker toys (Lego Technic)?
 - Not tractable (at least, not in 1940s/1950s; today maybe simulate in an off the shelf physics engine; see also this 16-bit ALU in minecraft!)
- Cellular ("Tesselation") Framework (Ulam/von Neumann)

Discrete 2D Space/Discrete Time

- Cells are 29 State FSM's
- "Automata", are functional patterns of states over cells, embedded innerded in the space

- Kinematic Framework
 - Tinker toys (Lego Technic)?
 - Not tractable (at least, not in 1940s/1950s; today maybe simulate in an off the shelf physics engine; see also this 16-bit ALU in minecraft!)
- Cellular ("Tesselation") Framework (Ulam/von Neumann)
 - Discrete 2D Space/Discrete Time
 - Cells are 29 State FSM's
 - "Automata" are functional patterns of states over cells, embedded investor
 the space.

- Kinematic Framework
 - Tinker toys (Lego Technic)?
 - Not tractable (at least, not in 1940s/1950s; today maybe simulate in an off the shelf physics engine; see also this 16-bit ALU in minecraft!)
- Cellular ("Tesselation") Framework (Ulam/von Neumann)
 - Discrete 2D Space/Discrete Time
 - Cells are 29 State FSM's
 - "Automata" are functional patterns of states over cells, embedded in the space.

- Kinematic Framework
 - Tinker toys (Lego Technic)?
 - Not tractable (at least, not in 1940s/1950s; today maybe simulate in an off the shelf physics engine; see also this 16-bit ALU in minecraft!)
- Cellular ("Tesselation") Framework (Ulam/von Neumann)
 - Discrete 2D Space/Discrete Time
 - Cells are 29 State FSM's
 - "Automata" are functional patterns of states over cells, embedded in the space.

- Kinematic Framework
 - Tinker toys (Lego Technic)?
 - Not tractable (at least, not in 1940s/1950s; today maybe simulate in an off the shelf physics engine; see also this 16-bit ALU in minecraft!)
- Cellular ("Tesselation") Framework (Ulam/von Neumann)
 - Discrete 2D Space/Discrete Time
 - Cells are 29 State FSM's
 - "Automata" are functional patterns of states over cells, embedded in the space.

- Kinematic Framework
 - Tinker toys (Lego Technic)?
 - Not tractable (at least, not in 1940s/1950s; today maybe simulate in an off the shelf physics engine; see also this 16-bit ALU in minecraft!)
- Cellular ("Tesselation") Framework (Ulam/von Neumann)
 - Discrete 2D Space/Discrete Time
 - Cells are 29 State FSM's
 - "Automata" are functional patterns of states over cells, embedded in the space.

Burks (1970):

... This result is obviously substantial, but to express its real force we must formulate it in such a way that it cannot be trivialized ...

... Consider, for example, a two-state cellular system whose transition function takes a cell into state one when any of its neighbors is in state one. Define an automaton to be any area, even a single cell. A cell in state one then reproduces itself trivially in its neighboring cells ...

... Clearly what is needed is a requirement that the self-reproducing automaton have some minimal complexity ...

... This requirement can be formulated in a number of ways. We will do it by requiring that the self-reproducing automaton also be a [universal?] Turing machine. References

Burks (1970):

... This result is obviously substantial, but to express its real force we must formulate it in such a way that it cannot be trivialized ...

... Consider, for example, a two-state cellular system whose transition function takes a cell into state one when any of its neighbors is in state one. Define an automaton to be any area, even a single cell. A cell in state one then reproduces itself trivially in its neighboring cells ...

... Clearly what is needed is a requirement that the self-reproducing automaton have some minimal complexity ...

... This requirement can be formulated in a number of ways. We will do it by requiring that the self-reproducing automaton also be a [universal?] Turing machine.

Burks (1970):

... This result is obviously substantial, but to express its real force we must formulate it in such a way that it cannot be trivialized ...

... Consider, for example, a two-state cellular system whose transition function takes a cell into state one when any of its neighbors is in state one. Define an automaton to be any area, even a single cell. A cell in state one then reproduces itself trivially in its neighboring cells ...

... Clearly what is needed is a requirement that the self-reproducing automaton have some minimal complexity ...

... This requirement can be formulated in a number of ways. We will do it by requiring that the self-reproducing automaton also be a [universal?] Turing machine.

Burks (1970):

... This result is obviously substantial, but to express its real force we must formulate it in such a way that it cannot be trivialized ...

... Consider, for example, a two-state cellular system whose transition function takes a cell into state one when any of its neighbors is in state one. Define an automaton to be any area, even a single cell. A cell in state one then reproduces itself trivially in its neighboring cells ...

... Clearly what is needed is a requirement that the self-reproducing automaton have some minimal complexity ...

... This requirement can be formulated in a number of ways. We will do it by requiring that the self-reproducing automaton also be a [universal?] Turing machine.

Herman (1973):

• 2D Cellular Framework

• Cells combine trivial, crystaline, reproduction with universal turing machine head

• Cells still simpler than in von Neumann model!

...What the result does show is that the existence of a self-reproducing universal computer-constructor in itself is not relevant to the problem of biological and machine self-reproduction...

But ... Herman's Counter Example

Herman (1973):

- 2D Cellular Framework
- Cells combine trivial, crystaline, reproduction with universal turing machine head
- Cells still simpler than in von Neumann model!

...What the result does show is that the existence of a self-reproducing universal computer-constructor in itself is not relevant to the problem of biological and machine self-reproduction...

Herman (1973):

- 2D Cellular Framework
- Cells combine trivial, crystaline, reproduction with universal turing machine head
- Cells still simpler than in von Neumann model!

...What the result does show is that the existence of a self-reproducing universal computer-constructor in itself is not relevant to the problem of biological and machine self-reproduction...

Herman (1973):

- 2D Cellular Framework
- Cells combine trivial, crystaline, reproduction with universal turing machine head
- Cells still simpler than in von Neumann model!

...What the result does show is that the existence of a self-reproducing universal computer-constructor in itself is not relevant to the problem of biological and machine self-reproduction...

Herman (1973):

- 2D Cellular Framework
- Cells combine trivial, crystaline, reproduction with universal turing machine head
- Cells still simpler than in von Neumann model!

...What the result does show is that the existence of a self-reproducing universal computer-constructor in itself is not relevant to the problem of biological and machine self-reproduction...

Langton (1984):

• Critique: Computational criterion too strong rather than too weak?

- Alternative: Non-trivial self reproduction characterised by separate processes of copying and decoding of a machine description.
- Satisfied by von Neumann's design.
- But ... Langton's Counter Example: Langton's Loop automaton also satisfies this criterion yet is clearly (?) trivial!

Burks	Langton	von Neumann	Conclusions?	References

Langton (1984):

- Critique: Computational criterion too strong rather than too weak?
- Alternative: Non-trivial self reproduction characterised by separate processes of copying and decoding of a machine description.
- Satisfied by von Neumann's design.
- But ... Langton's Counter Example: Langton's Loop automaton also satisfies this criterion yet is clearly (?) trivial!

Burks	Langton	von Neumann	Conclusions?	References

Langton (1984):

- Critique: Computational criterion too strong rather than too weak?
- Alternative: Non-trivial self reproduction characterised by separate processes of copying and decoding of a machine description.
- Satisfied by von Neumann's design.
- But ... Langton's Counter Example: Langton's Loop automaton also satisfies this criterion yet is clearly (?) trivial!

Burks	Langton	von Neumann	Conclusions?	References

Langton (1984):

- Critique: Computational criterion too strong rather than too weak?
- Alternative: Non-trivial self reproduction characterised by separate processes of copying and decoding of a machine description.
- Satisfied by von Neumann's design.
- But ... Langton's Counter Example: Langton's Loop automaton also satisfies this criterion yet is clearly (?) trivial!

von Neumann's Criterion?

von Neumann (1949) [Illinois Lectures]:

... One of the difficulties in defining what one means by self-reproduction is that certain organizations, such as growing crystals, are self-reproductive by any naive definition of self-reproduction, yet nobody is willing to award them the distinction of being self-reproductive...

... A way around this difficulty is to say that self-reproduction includes the ability to undergo inheritable mutations as well as the ability to make another organism like the original...

von Neumann's Criterion?

von Neumann (1949) [Illinois Lectures]:

... One of the difficulties in defining what one means by self-reproduction is that certain organizations, such as growing crystals, are self-reproductive by any naive definition of self-reproduction, yet nobody is willing to award them the distinction of being self-reproductive...

... A way around this difficulty is to say that self-reproduction includes the ability to undergo inheritable mutations as well as the ability to make another organism like the original...

.angton

von Neumann

Conclusions

References

Degeneration of Complexity (Engineering)

angton

von Neumann

Conclusion

References

Growth of Complexity (Biology)

von Neumann's (*real*) Problem . . .

- How can machines manage to construct other machines more "complex" that themselves, in a general and open-ended way — i.e., with the potential for unbounded evolutionary growth of complexity.
- What might count as a "solution"?
 - Exhibit a class of constructing machines, spanning a wide range of complexities, such that the whole class is connected by the relative construction (mutation) network.
 - For good measure, require that every machine in the class also be SR (every machine has a self construction loop). This is necessary (not sufficient) for Darwinian selection...

von Neumann's (*real*) Problem ...

 How can machines manage to construct other machines more "complex" that themselves, in a general and open-ended way — i.e., with the potential for unbounded evolutionary growth of complexity.

• What might count as a "solution"?

- Exhibit a class of constructing machines, spanning a wide range of complexities, such that the whole class is connected by the relative construction (mutation) network.
- For good measure, require that every machine in the class also be SR (every machine has a self construction loop). This is necessary (not sufficient) for Darwinian selection...

von Neumann's (*real*) Problem . . .

- How can machines manage to construct other machines more "complex" that themselves, in a general and open-ended way — i.e., with the potential for unbounded evolutionary growth of complexity.
- What might count as a "solution"?
 - Exhibit a class of constructing machines, spanning a wide range of complexities, such that the whole class is connected by the relative construction (mutation) network.
 - For good measure, require that every machine in the class also be SR (every machine has a self construction loop). This is necessary (not sufficient) for Darwinian selection...

von Neumann's (*real*) Problem ...

- How can machines manage to construct other machines more "complex" that themselves, in a general and open-ended way — i.e., with the potential for unbounded evolutionary growth of complexity.
- What might count as a "solution"?
 - Exhibit a class of constructing machines, spanning a wide range of complexities, such that the whole class is connected by the relative construction (mutation) network.
 - For good measure, require that every machine in the class also be SR (every machine has a self construction loop). This is necessary (not sufficient) for Darwinian selection...

Langton	von Neumann	Conclusions?	References

The General Constructive Automaton

 $(u_0 \oplus d(m)) \rightsquigarrow (m \oplus d(m))$

Langton

von Neumann

Conclusion

References

Von Neumann SR: Minimal Case

 $(u_0 \oplus d(u_0)) \rightsquigarrow (u_0 \oplus d(u_0))$

Von Neumann SR: Generic Case

 $((u_0 \oplus m) \oplus d(u_0 \oplus m)) \rightsquigarrow ((u_0 \oplus m) \oplus d(u_0 \oplus m))$

Langton

von Neumann

Conclusions

References

Growth of Complexity (von Neumann)

angton

von Neumann

Conclusions?

References

Conclusions: Looking Backward

- Is this the *first* solution?
- Is it the only solution?
- Is it the *simplest* solution?

angton

von Neumann

Conclusions?

References

Conclusions: Looking Forward

- Complexity?
- Individuality?
- Origins?
- Evolutionary growth of complexity?

	Langton	von Neumann	Conclusions?	References
References				

- Burks, A. W. (1970). Von neumann's self-reproducing automata. In Burks, A. W., editor, *Essays on Cellular Automata*, pages 3–64 (Essay One). University of Illinois Press, Urbana.
- Herman, G. T. (1973). On universal computer-constructors. *Information Processing Letters*, 2:61–64.
- Langton, C. G. (1984). Self-reproduction in cellular automata. *Physica*, 10D:135–144.
- von Neumann, J. (1949). Theory and organization of complicated automata. In Burks, A. W., editor, *Theory of Self-Reproducing Automata [by] John von Neumann*, pages 29–87 (Part One). University of Illinois Press, Urbana. Based on transcripts of lectures delivered at the University of Illinois, in December 1949. Edited for publication by A.W. Burks.

Burks	Langton	von Neumann	Conclusions?	References
Related	Online Reso	urces		

- Source files for presentation (LATEX+beamer):
 - http: //alife.rince.ie/talks/altona-2011/altona-2011-src.zip
- Full Paper (Artificial Life, Vol. 6, Issue 4, Fall 2000, pp. 347-361):

• http://alife.rince.ie/bmcm-2000-01/

- Rince/DCU Alife Laboratory:
 - http://alife.rince.ie/
- The Rince Institute:
 - http://www.rince.ie/

	Langton	von Neumann	Conclusions?	References
Copyright I				

This work is copyright ©2011 by Barry McMullin. It is made available under the Creative Commons licence identified as Attribution-NonCommercial-ShareAlike 3.0. *Informally*, this means that you are free:

- to share to copy, distribute, and display the work, and
- to remix to make derivative works,

under the following conditions:

- Attribution. You must give the original author credit.
- *Noncommercial.* You may not use this work for commercial purposes.
- *Share Alike.* If you alter, transform, or build upon this work, you may distribute the resulting work only under a license identical to this one.

- All other rights are reserved by the copyright holder.
- For any reuse or distribution, you must make clear to others the license terms of the work.
- Any of these conditions can be waived if you get permission from the copyright holder.
- Your fair dealing and other rights are in no way affected by the above.
- This is an *informal*, human-readable summary of the licence terms, which has no force in its own right. The legal terms of the licence are determined solely by the Legal Code (the full license).